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Abstract— The paper proposes a Machine Learning 
methodology for Android malware detection and recognition, 
including crypto-mining applications using the blockchain. The 
design is based on a hierarchical classification method, with 
several decision stages. A combination of functional and 
statistical features is proposed to be applied for data 
classification in order to provide a high-performance malware 
recognition process.  The specific contribution of this design 
methodology is the hierarchical classifier with detection and 
discrimination stages, respectively. Further works should be 
done for various features sets in order to achieve an optimized 
and high-accuracy modeling process supporting an innovative 
Machine Learning-based solution for Android malware 
detection.

Keywords— Android; malware; hierarchical classifier; 
machine learning; crypto-mining; blockchain; detector 

I. INTRODUCTION 

Since the last few years the mobile devices have become 
an extending support for various applications in areas like 
financial, medicine, science. This is because of the need for 
mobility and accessibility of mobile communications 
networks for many end-users acting in residential or 
corporate sites and performing various tasks according to 
their applications. Within this general framework, one can 
see that Android is currently the most popular operating 
system for mobile devices [1]. This trend is proven by the 
evolution of the market shares of Android OS (operating 
system) during the last years. Its fast adoption leads to an 
increasing rate of malware occurrences comparing to the 
previous years. The increasing functional capabilities that 
Android platform provides to the various applications of the 
end-users become a source for new vulnerabilities and attack 
points that can be exploited the malware developers [1]. In 
many cases, the malware spreading opportunity is supported 
by the third-party applications stores availability. This is 
because these third-party developer applications are typically 
hosted in Google Play [1]. 

The malwares for mobile devices (with Android OS) 
include viruses, Trojans, adware, backdoors, worms, botnets, 
spyware, ransomware and other applications that are 
designed for malicious purposes using various 
implementation methods such as code obfuscation, dynamic 
execution, stealth techniques, encryption and repackaging in 
order to avoid the actual anti-malware mechanisms for 
Android [1], [2]. The most applied techniques that are used 
to attack the Android platforms (devices, OS and installed 
applications) include sending messages without the target’s

awareness and deleting them by itself, fraudulent sending of 
user’s private data [1]. 

The Android malware could also be classified based on 
their behavior, as following [2]: Information extraction 
malware, Premium Rate Calls and SMS, Root Exploits, 
Search Engine Optimization, Dynamically Downloaded 
Code. According to the Malwarebytes LABS report 
published in 2017, in 2016 ransomware increased to the top, 
targeting especially business [3]. It is a cyber criminality 
industry based on the new paradigm of Ransomware as a 
Service (RaaS). During the last quarter of 2016, nearly 400 
variants of ransomware were identified [3]. As concerning 
the specific Android malware, the the Malwarebytes LABS 
report shows that the most important trend in 2016 was the 
increasing use of randomization as an approach of the 
malware developers to bypass the detection mechanisms [3].

The purpose of this research activity is to define a design 
methodology for an anti-malware solution addressing 
Android platforms, based on advanced machine learning 
techniques. The application goals are the detection and 
recognition of various malware having as their targets the 
mobile devices and apps. The modeling process should allow 
to accurately recognize and detect the malicious apps before 
producing serious damages by compromising the end-users 
sensitive data and their privacy. 

The rest of the paper is structured as following. Section II 
presents related works about the most relevant developments 
in the area of anti-malware solutions while Section III 
proposes a methodological framework for design and 
development of Android malware detection solutions; 
Section IV draws conclusions and outlines further research 
lines in order to design, develop and implement optimized 
solutions taking in account the various real applications 
constraints.

II. RELATED WORK
The recent trends in the Android malware forced the anti-

malware products developers to design, implement and 
release customized solution to detect, recognize and block 
the different malware types for Android devices. Most of the 
existing solutions are grouped into 2 categories: static 
methods and dynamic methods [1]. Any of these main 
approaches is used by most of the actual anti-virus 
applications in order to prevent or minimize the malware 
attacks against the mobile devices and the installed apps. 
Usually the security systems are designed to operate 
according to some thresholds that are defined based on the 
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threat level and the data sensitivity. So, the increasing of the 
threat or alert level leads to the corresponding increase of the 
detection rate of the target malware. Given these trends and 
the limitations of the actual anti-malware solutions, the 
overall risk situation of the Android devices and their 
supported apps users is difficult to be assessed [1]. A 
taxonomy of the anti-malware techniques is given in Fig. 1 
[1]. 

Fig.1. Categories of actual Android Anti-Malware Solutions[1]

The static anti-malware methods check the functionalities 
and the malicious potential of an application while its 
operational mode is disabled; the source code of the 
application is analyzed outside any run-time execution. This 
approach allows to recognize potential malicious behaviors 
that do not activate until some particular conditions are met. 
The static solutions include the following techniques [1], [2], 
[4], [5]: Signature-based detection, Permission-based 
detection, Dalvik Bytecode detection. Therefore, the static 
anti-malware techniques are used to detect malware without 
executing the suspicious apps.  The modalities include 
extracting permissions requested from the Manifest file, 
analyzing information passed through Inter-Component 
Communication and API calls [2]. These methods are not 
always very efficient in providing the desired protection 
level. Many malware developers already implemented and 
applied obfuscation techniques that proved to be very 
effective against the static anti-malware solutions [2].

In the dynamic approach, the antimalware engines 
perform the application analysis during the execution time. 
These solutions could miss some code segments that are not 
yet executed, however the malicious behaviors that are not 
recognized by using static methods could be easily identified 
with the dynamic approach. Anyway, the dynamic methods 
require more resources in order to perform the malware 
detection and recognition, while focusing on polymorphic 
and metamorphic code obfuscation techniques that are used 
in some new discovered malwares. The dynamic anti-
malware solutions include the following techniques [1], [2]: 
Anomaly-based detection, Taint analysis, Emulation based 
detection. Therefore, the dynamic anti-malware techniques 
are used to detect malware with analysis involving running 
the app in a controlled environment, monitoring the 
application behavior at runtime [2]. Many actual 
developments with dynamic solutions for Android malware 
detection are also based on novel approaches including [2]: 
Cloud-based anti-malware protection, Reputation-based 
application recognition.

As concerning the security performance evaluation of the 
Android malware detection, one can mention the method 
called PAMD (Permission analysis for Android Malware 
Detection) [6]. According to their authors, this method 

allows to evaluate the security level of Android apps based 
on their permission.

The technical literature and reporting in this area are very 
comprehensive. A comprehensive overview for the 
development of mobile malware with a survey of the existing 
methods for malware mitigation on mobile devices is 
presented in [7]. Here there are given the mobile malware 
specifics, followed by the main malware detection methods, 
with a set of comparison criteria. Among the particular 
classes of anti-malware solutions for Android, in the cited 
study there are mentioned [7]:

Permission analysis, that considers the information in app 
description and its manifest. This information includes 
the conditions for the security configurations of apps 
under which they become potentially dangerous. The 
correspondence between the application-required 
permissions and their description should be verified;
Machine learning, a very promising approach to design, 
develop and release innovative and efficient anti-malware 
solutions. The ML-based malware detection methods can 
be considered as static or dynamic, depending also on the 
way in which the learning process is applied. The 
learning stage of the overall malware recognition process 
performs the detection model design, actually training the 
classifier with the suitable data comprising the most 
informative features of Android malware. The model 
becomes able to separate between malware and not-
malware apps (a binary classification in this case). Some 
of these methods consider the API calls that are used 
within the Android apps and perform the malware 
recognition with machine learning algorithms while 
taking as features some parameters of the API calls. 
Among the classification algorithms, the best 
performances seemed to be provided by KNN (K-Nearest 
Neighbors) and SVM (Support Vector Machine);
Battery life monitoring: the main idea is that a malicious 
app running on a mobile device could increase its energy 
consumption. This factor is significant for the overall 
functionality of the mobile device, its operating system 
and cloud-based detection. This detection approach is 
based on methods for efficient analysis transferring data 
from the mobile device to an analysis site;
Cloud-based detection, approach that is also justified by 
the limited resources of mobile devices (storage, 
processing). This detection approach is based on methods 
for efficient analysis transferring data from the mobile 
device to analysis site.

A survey of evaluation techniques for Android anti-
malware using transformation attacks is given in [8]. 
According to that survey authors, it is mandatory to evaluate 
the reliability of the current anti-malware solutions for 
Android with respect to the various malware. A systematic 
framework to evaluate the robustness of the actual anti-
malware products is presented while considering several 
transformation attack techniques. Such tools are very useful 
for the decision-making process within the overall secure 
system development [8], [9]. The systematic framework 
named DroidChameleon uses some common transformations 
techniques to automatically transform the Android 
applications allowing to generate new variants of malware 
that are used to assess the effectiveness of the most applied 
anti-malware products [9].

Many security tools for Android platform combine 
several design, development and implementation techniques. 
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One of these tools is Andrubis, a completely automated, 
publicly available analysis system for Android apps. This 
tool combines static and dynamic analysis techniques, while 
applying some operations into several stages: Static analysis, 
Dynamic analysis and Post-processing. The feature set 
generated by Andrubis is used within a behavioral profiling 
process while applying an unsupervised learning (with 
clustering) [10]. 

ThinAV is a truly lightweight mobile cloud-based anti-
malware solution for Android that uses pre-existing web-
based file scanning services for malware detection; this 
security tool combines a lightweight footprint on an Android 
device with the capability of leveraging several free existing 
anti-malware services that are already available on Internet 
[11].

DroidClone is another security tool that allows to detect 
Android malware variants by exposing code clones. The 
main idea that support this implementation for malware 
detection is that matching parts of a malware family with 
parts of an application provides a strong evidence about the 
malware presence within that program or even that the 
program itself is a malware. DroidClone proceeds to expose 
code clones (actually code segments that are similar) in 
Android apps in order to detect malware variants [12].

Another approach for detection and identification of 
Android malware is based on information flow monitoring 
[13]. The support technique is called Dynamic Information 
Flow Tracking (DIFT) for monitoring an application during 
its execution. It allows to monitor where the sensitive data 
goes within a given environment at execution time. This 
technique is applied on Android to find out if an application 
is leaking sensitive data. Here the malware profile is built 
with a system information flow graph [13]. 

HinDroid is an intelligent Android malware detection 
system based on structured heterogeneous information 
network (HIN). This anti-malware method relies on a multi-
kernel learning process and a system architecture that 
includes: an unzipper and decompiler, a feature extractor, the 
HIN constructor, the multi-kernel learner and, finally, the 
malware detector functionality [14]. This solution integrates 
several machine learning-based tasks with some 
optimizations that are performed at various processing 
stages, including the multi-kernel approach. This is a 
relevant example for the potential of Machine Learning to 
support the design of reliable security applications including 
those for malware detection/recognition for the Android 
platform. 

The Machine Learning-based approaches present a 
significantly potential to increase the security performances 
of both approaches (static and dynamic) in malware 
detection for Android, with an optimal combination of 
unsupervised and supervised learning methods and also with 
an appropriate feature selection. Some recent developments 
with special focus of feature-related issues are described as 
following. These are relevant for our work, an ongoing 
research to design, develop a ML-based methodology for 
malware detection using some optimizations for feature 
generation/selection and classification process.

In [15] it is approached the detection of malware on 
Android based on application-level features. The reason to 
use application features for Android malware detection is 
that most of the existing anti-malware solutions are able to 
only detect the malware in their original version, but not after 
some transformations or even obfuscation. Another issue is 
that the permission feature-based detection can lead to many 

undetected malwares [15]. The referred study proposes a 
more comprehensive static analysis method in which the 
machine learning-based detection model is applied for 
additional features exceeding the conventional permission-
based features that are already extensively used in many of 
the actual products. The classification process for malware 
detection/recognition uses different features including 
permissions and suspicious API (Application Programming 
Interface) calls. The classification output decisions are 
malware and non-malware (benign app), respectively.

The features examination for Android malware detection 
is also researched in [16], by considering the Java API call 
data as features sources for malware detection. The extracted 
features are weighted in order to provide some reliable 
indicators of the malicious potential of the source data or 
Android app. A hyperparameter optimization is applied in 
order to enhance the malware recognition accuracy. This 
process concerns the learning rate (hyperparameter), not the 
features weight (parameter). The parameters are the values of 
certain variables used in the model and that are affected by 
the overall training process. The hyperparameters are the 
higher-level properties of the model that are chosen by the 
user. Other typical examples of hyperparameters are:   the 
decay rate of the learning rate, the number of training steps, 
the size of training dataset [16].

Another Machine Learning approach to Android malware 
detection is presented in [17]. Here a certain number of 
features are extracted and then a One-Class Support Vector 
Machine is trained in an off-line (off-device) way, in order to 
leverage the higher computing power of application servers. 
The main idea of that approach was to design a classifier able 
to recognize most of the training samples as belonging to the 
positive class, and also to classify the validation data as 
negative only there are sufficient differences from the 
training samples. For the classification, the design is based 
on the SVM classifier that is a linear model in a high-
dimensional feature space. The resulting discriminant 
function is given based on a constrained quadratic 
optimization problem [17]. The considered features derive 
from the permissions to access some restricted functionalities 
of Android OS. The list of the requested permissions 
provides the features for the further classification process. 
These permission-based features are divided into 2 groups: 
standard and non-standard permissions features, respectively. 
The classification approach was a kernel-based one.

A comprehensive study concerning the Android malware 
detection techniques with Machine Learning is presented in 
[18]. It concerns the ML algorithms that are designed to 
analyze features extracted from malicious apps and their 
using to recognize and detect the malware applications. This 
is an overview of the actual trends in design anti-malware 
detection solutions using ML-based approach and with focus 
on the Android OS.

The ML methods are applied also to analyze the features 
of some particular malware families for Android in order to 
find out some hidden attributes and behavioral features that 
could be exploited to recognize and detect similar behaviors 
belonging to other malware families. An example is using 
DroidDream Android malware behavior for identification of 
other malware families [19]. In this example, the Naive-
Bayes classifier is applied to analyze the DroidDreamLight 
family also using a dataset of the most popular Google Play 
apps. 

As stated in [20], the most recent and sophisticated 
Android malware employ detection avoidance mechanisms 
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able to hide their malicious properties from most of the 
actual anti-malware tools. These mechanisms are based on 
various anti-emulator techniques in which the malware 
programs try to mask or even to hide their malicious nature 
with an emulator detection strategy. This is why the anti-
emulation countermeasures become very important for the 
Android malware detection, requiring for an approach with 
analysis and detection based on real devices. This could be a 
reliable design solution to alleviate the issues of anti-
emulation and also to improve the dynamic analysis 
effectiveness. In [20] it is presented a research concerning 
the machine learning-based malware detection with dynamic 
analysis on real devices. The dynamic features are 
automatically extracted from Android devices and also a 
comparative analysis of emulator vs. device-based detection 
with several ML algorithms is performed [20]. The same 
study concludes that several features for Android malware 
detection and recognition could be more effectively extracted 
within an on-device dynamic analysis process compared to 
the emulator-based approach. It states that all the considered 
ML-based detection algorithms performed better when 
applied to features that are extracted within the on-device 
dynamic analysis.

III. THE MACHINE LEARNING-BASED
METHODOLOGY FOR ANDROID MALWARE

DETECTION
Any machine learning solution design and development 

process requires the following elements: the design dataset, 
the features, the modelling process together with its 
evaluation and optimization in order to meet the target 
performances of the real application. Here the focus is on the 
Android malware detection and recognition, but the main 
steps of the design process follow the same operations 
sequence. In order to design a reliable malware detection and 
recognition machine learning-based solution the following 
elements should be considered for the overall modeling 
process:

Input data for the model design: the input variables that 
allow to detect malware. These data types are used for the 
further feature generation and selection steps. The 
extracted data concern functional aspects about Android 
platform and the changes generated by various apps, 
providing behavioral information;

Feature generation and selection: a process in which the 
most informative elements are extracted from the input 
data to provide the required features for the further 
classification stage. The feature generation uses statistics 
and some qualitative information related to the Android 
functionality and applications behaviors that could be 
relevant for various malware families. The feature 
selection looks to optimally adjust the dimensionality of 
the data for the classification;

Data classification (classifier design): to select, design 
and develop the classification model in order to 
accurately recognize various classes of malware (in this 
case). The overall modeling process includes the 
following operations:

o Model selection, in which several classifiers 
are considered for the malware detection 
function design;

o Model training and testing, in which the model 
is built based on the training dataset. The 
testing should be performed on an independent 
dataset;

o Optimization based on ROC curves: the best 
operating point is selected according to the 
application requirements. The classifier design 
also includes the model parameters tuning or 
adjustment. This is done according to the 
desired performance of the detection function.

This is an ongoing research, just at its beginning stage. 
We briefly consider the basics of the design process focusing 
on the main contributions of this research:

the proposed framework to generate features for 
Android malware detection/recognition. It will be a 
combination of functional features and some 
statistical features that should be derived based on 
an history of the events, malware occurrences and 
their consequences on the end-users devices and 
their mobile apps, for the Android platform in our 
case;

the proposed framework to perform data 
classification for Android malware 
detection/recognition. Here we propose a 
hierarchical classification model in which the 
several malware classes are considered;

the proposed framework to conduct the 
performance estimation and optimization of the 
detection/recognition process in order to meet the 
real mobile applications security requirements. An 
optimization method based on ROC curves analysis 
will be adopted for this purpose.

A. Input variables and target performance
The overall detection and recognition for various 

malware classes is based on some functional/operational data 
about the devices and their operating systems. These 
information concerns permissions, mobile apps settings, 
device attributes, protocol-related information, OS-related 
attributes, as in the previously cited works [15] - [20]. All of 
them are grouped into the input variables that provide the 
required data sources for the feature generation and selection 
process. On the other hand, the overall design process should 
start from the target KPI (Key Performance Indicators) that 
are defined according to the real applications end-users 
requirements and also considering the complexity vs. 
performance ratio. A typical KPI set is True Positive Rate 
(TPR) vs. False Positive Rate (FPR). In the case of the 
malware detection/recognition process, the significance of 
these KPI are the following, based on a certain target 
malware class that is considered for the recognition process:

TPR is the detection rate for the target malware;

FPR is the alert rate (or false alarms rate) for the 
target malware

The typical targets for the security applications KPI, as 
the case of malware detection/recognition for Android, are to 
achieve a detection rate (TPR) of at least 90% for a false 
alarm rate (FPR) not exceeding 10%. This should be done by 
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applying one or several of the following design/development 
strategies:

Optimizing the feature space design, that concerns the 
feature generation and selection process looking to adjust 
the dimensionality such as to provide an appropriate 
performance vs. complexity ratio based on an optimal 
informative degree of the retained features;

Optimizing the classification design, that concerns the 
modelling process for data classification, including the 
model parameterization tuning (parameters and hyper-
parameters, respectively) and with integration of the 
models into a hierarchical classification system;

Adjusting the security thresholding for the real mobile 
application, such as to provide the optimal degree of 
sensitive data protection against an enlarging range of 
threats for mobile apps and devices.

B. Feature Generation and Selection
The feature generation is the process in which the 

relevant features for the classification are derived from the 
raw data. This process could involve some computations, 
various statistics and sometimes a careful selection strategy 
in order to provide the best features able to ensure the target 
KPI as required (at least 90% detection rate against an alert 
rate not exceeding 10%). The proposed method for the 
feature generation and selection in order to perform the 
Android malware detection/recognition is depicted in Fig. 2. 
The overall feature generation process has the following 
stages:

Fig. 2. The overall feature generation process for Android malware 
detection

Feature extraction from the raw data concerning 
various functional issues of the Android devices, 
apps and OS, permissions, protocol issues. The 
extracted data are embedded into a set of attributes 
named direct features. These features are 
represented into a mathematical form as direct 
feature vector (Xdir). The size of this feature vector 
is ndir. If the raw data contain some categorical 
variables, the One-Hot Encoding should be applied 
in order to provide numerical variables as features 
[21];

Feature derivation, a process in which some 
statistics are applied on primary data concerning 
various malware events that are generated within 
the OS or Android apps running on the mobile 
device. It is an history-based approach in which 
new features are computed based on the direct 
features that were previously defined. The derived 
feature vector is Xderiv and the number of derived 
features is nderiv;

Feature-level fusion, a process in which several 
features sets extracted from various sources are 
combined to generate a single feature vector for the 
further classification during the overall modeling. 
The approach for the feature fusion is an extension 
from the multimodal biometric security systems, in 
which various features extracted from different 
human traits are fused to improve the recognition 
accuracy [22]. Depending on the resulted features 
spaces sizes (for the direct and derived features, 
respectively), the fusion process could be applied 
with one of the following 2 variants [23]:

o The concatenation fusion: a fusion process in 
which several feature vectors are concatenated 
to generate a single feature vector. This fusion 
is applied when the features are not 
homogeneous, therefore if the feature vectors 
have different sizes. For our design, the 
resulted feature vector is

0, |a dir derivX X X (1)

If ndir nderiv (the direct and derived features 
sets have not the same size), then the 
concatenation fusion is the main design option 
for the overall feature space. An alternative 
could be to complete the lower-dimensional 
feature vector with null values in order to 
provide the common size for both features 
sets. This could be a design option for the 
missing values of some features [24]; 
however, it could lead to inconsistent classifier 
outputs if the functional fusion is not 
appropriately designed. The main drawback of 
this fusion technique is the significant    
dimensionality increasing of the feature space 
dimensionality, with impact on the processing 
computational complexity and the curse of 
dimensionality problem [24];

o The functional fusion: a fusion process in 
which several feature vectors with a common 
size (the same dimensionality of the feature 
spaces) are combined using a certain function 
(mathematical rule), sometimes with 
application-specific chosen parameters (typical 
several weights). For this design, the resulted 
feature vector is

0, ( , ; )b dir derivX f X X W (2)

where W is the set of weights that shows the 
contribution of the fused    features to the 
overall feature set, depending on their 
significance for the real security application 
(in this case, malware detection/recognition for 

18



Android). The fusion is based on a selected 
function f, that could be a weighted 
sum/average or other mathematical model that 
could be applied to compute the global feature 
vector from the direct and derived feature 
vectors, respectively. The critical condition for 
the functional feature-level fusion is to have a 
common feature space dimensionality of the 
fused data sources, in order to apply a certain 
function on vectors with the same size;

Feature selection, a process in which the feature space 
dimensionality is optimally adjusted in order to 
provide the most relevant information for an accurate 
malware recognition/detection process. The main goal 
is to preserve the most relevant information with an 
optimal cost concerning the processing complexity 
within the further classification stage. In the proposed 
design methodology, the feature selection is 
performed just after the other feature generation 
operations, and even after the feature fusion. The 
reason for this design option is to reduce the 
computational and time expenses involved by running 
the feature selection algorithms on each of the 
generated feature vectors. In many of the actual ML-
approaches for malware detection, the feature 
selection is applied just after the feature extraction 
from each of the several data sources required in the 
real application. From the existing feature selection 
algorithms, we only consider the following 
suboptimal techniques for this design: forward-
searching feature selection, backward-searching 
feature selection, floating-search feature selection, 
individual ranking feature selection, random feature 
selection [24], [25]. The performances of these 
feature selection strategies should be compared on the 
datasets within the malware recognition application, 
in order to find out the suitable method to keep the 
best features, ensuring an optimal execution time vs. 
recognition accuracy ratio. However, some researches 
concerning these feature selection methods applied on 
biometric data suggests that the individual ranking 
has an optimal execution time for an overall feature 
space size that does not exceed 50 [26]. This is why 
the individual ranking could be considered if the 
feature extraction and fusion processes provide no 
more than 50 final features. The feature selection is 
important for the malware detection because this 
process requires to properly exploit the most relevant 
input data properties to provide the target KPI with 
the complexity/costs minimization. Within this 
development framework, the chosen feature selection 
algorithm will provide outliers and redundancy 
removal to only retain the most informative features 
[26].

C. Data classification (the classifier general designs
In our design, the data classification for Android malware 

recognition is performed with a hierarchical classifier in 
which the decisions are provided on several stages, according 
to the algorithm depicted in Fig. 3. Actually, it is an 
extension of the hierarchical multimodal algorithms that 
were applied to develop biometric security models [22], [23], 
[26]. The difference results from the features the algorithms 
apply to; in this design the features are extracted and derived 

from some behavioral characteristics of the Android devices 
and apps under various real-time operational environments. 

Furthermore, special attention is given to recent number 
one malware threat of ransomware, which is being replaced 
by cryptocurrency mining various coins or tokens traded on 
the blockchain [27], anonymous blockchains being preferred 
by hackers.

Fig. 3. The hierarchical classifier design for Android malware 
detection/recognition

The classification system design is based on a hierarchy 
of classifiers with 2 stages. In the first stage the classifier is a 
detector, therefore a target-vs.-non-target model that 
provides decisions to recognize a target malware class. In 
this way, the multi-class problem of the malware recognition 
is divided into 2 sub-tasks: a first detection stage that 
performs the target malware class identification and a second 
stage that performs the discrimination among all the other 
considered malware. 

The main difference between a detector and a 
discriminant is that a detector is only focused on a target 
(most important) class, and for its training the data samples 
belonging to all the other classes are grouped into a single 
non-target class; the discriminant provides multi-class 
decisions (with more than 2 classes, depending on the 
application).

In the proposed design of the classifier for Android 
malware detection/recognition, if MX is the class label for the 
malware type (or a class label for several malware apps with 
very similar features and severity), then a malware detector 
(target-vs.-non-target classifier) provides the following 
decisions (for a current datapoint X within the designed 
feature space), no matter the underlying classification model:

MX : MT for the target malware class label; 

        Mnon-T for the non-target malware class label.

The target malware class could include several malware 
types that are grouped in a whole malware family for 
Android. The target malware class should be chosen based 
on its importance or severity for the mobile device, apps and 
OS functionalities and sensitive end-used data.

A malware discriminant model provides the following 
malware class labeling decisions:

MX : M1 for the first malware class (individual malware 
or malware family, if case);
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        M2 for the second malware class (individual 
malware or malware family, if case);

        ……………………..

        Mn for the nth malware class (individual malware or 
malware family, if case);

        M? for an unknown malware class

D. Model Selection
The model selection looks to find out the potentially best 

classifications models for both stages of the designed 
classifier for Android malware detection/recognition. In this 
case, given the estimated number of the extracted and 
generated features (direct and derived features, respectively), 
the Support Vector Machine classifier seems to be one of the 
most reliable design option, at least for the first classification 
stage (detection), that requires for a 2-class model. 

Anyway, the training process should allow to fix or even 
to adjust both the suitable parameters and hyper-parameters 
of the chosen classifier. Also, the classifier design should 
consider finding the suitable kernel, given the non-linear 
characteristic of the direct and derived features for Android 
malware detection/recognition.

E. Training and testing
For the training and testing (validation) processes, the 

proposed methodology will divide the data depending on the 
time periods in which the malware details are acquired. 
Actually, this approach is justified by the actual dynamic in 
malware occurrences for Android devices and apps. This 
requires to periodically update the training data in order to 
ensure the suitable information for the malware detection 
and recognition. Therefore, the training process should be 
not a static one, but it must use the refreshed data about the 
new malware and various vulnerabilities in Android apps, 
OS and devices. 

One of the most critical issues that should be carefully 
considered while designing a high-performance anti-
malware solution for Android using the proposed 
detection/recognition methodology is the relevance or the 
malware classes (families) and their representativity within 
the training data. This issue relates to the occurrence 
frequency and the severity degree of those apps. The class 
representation remains actually a significant challenge in 
training classifiers able to perform in various real 
applications.

F. Performance estimation and optimization with ROC 
curves
The performance measures that are considered here are 

TPR and FPR, respectively. The target KPI for performance 
estimation should be the following:

• at least 90% for malware detection rate (TPR for a 
certain malware class or a malware family including several 
malicious apps);

• an alert rate (FPR for the target malware 
class/family) that does not exceed 10%.

The performance evaluation for a certain malware class 
should be performed using ROC (Receiver Operating 
Characteristic) curves that are generated from a set of 

classifier operating points. An operating point is a pair of 
the performance estimators that are achieved for a certain 
security threshold. Therefore, it is a thresholding-based 
approach in which the security thresholds are based on the 
real application specific requirements. The typical ROC 
curve for such a security system (in our case, a malware 
detection module) looks like the one depicted in Fig. 4.

Fig. 4. A typical ROC curve for a multi-detector security system with 
hierarchical classification structure

Starting from the ROC curves that are generated using 
the set of operating points (based on a specific 
thresholding), one can define an iterative method for 
performance optimization that can be used for various 
applications requiring Machine Learning-based approaches. 
A feasible case is that of ML-based malware detection for 
Android, with an appropriate training of the classifier. The 
method steps are depicted in Fig. 5 [23].

Fig. 5. Iterative optimization method for security systems, with application 
in malware detection

In Fig. 5, the optimization is based on a thresholding 
approach, in which the best operating point that is found out 
till the current moment should be compared with a security 
application specific threshold, that in our case is the 
detection threshold. The iterations are performed according 
to the real environment events (for instance to take in 
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account the new malware and vulnerabilities occurring for 
the Android apps and devices

IV. CONCLUSIONS
In this paper we defined a full methodological framework 

to design, develop and evaluate malware detection and 
recognition solutions for Android platform, while 
considering advanced Machine Learning approaches with a 
suitable optimization procedure in order to ensure the target 
KPI as concerning the malware detection rate, also with a 
corresponding reduction of the false alarms. This is an 
ongoing research in which the proposed methodology 
includes some data analytics for the best feature generation 
in order to support a high-performance design and modeling 
process and finally to implement an optimized solution.

Further work must be done especially as concerning the 
considered features for malware recognition, as much as 
there is a fast evolution in this domain, with new malware 
and potential malicious apps for Android devices and OS. 
Anyway, the Machine Learning approach becomes currently 
the most applied approach to design various security 
solutions for a continuously enlarging applications area.
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